Hierarchical Self-Assembly of Cellulose Nanocrystals in a Confined Geometry

نویسندگان

  • Richard M. Parker
  • Bruno Frka-Petesic
  • Giulia Guidetti
  • Gen Kamita
  • Gioele Consani
  • Chris Abell
  • Silvia Vignolini
چکیده

Complex hierarchical architectures are ubiquitous in nature. By designing and controlling the interaction between elementary building blocks, nature is able to optimize a large variety of materials with multiple functionalities. Such control is, however, extremely challenging in man-made materials, due to the difficulties in controlling their interaction at different length scales simultaneously. Here, hierarchical cholesteric architectures are obtained by the self-assembly of cellulose nanocrystals within shrinking, micron-sized aqueous droplets. This confined, spherical geometry drastically affects the colloidal self-assembly process, resulting in concentric ordering within the droplet, as confirmed by simulation. This provides a quantitative tool to study the interactions of cellulose nanocrystals beyond what has been achieved in a planar geometry. Our developed methodology allows us to fabricate truly hierarchical solid-state architectures from the nanometer to the macroscopic scale using a renewable and sustainable biopolymer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Confined self-assembly of cellulose nanocrystals in a shrinking droplet.

We have studied how cellulose nanocrystals (CNC) self-assemble into liquid crystalline phases in shrinking, isolated droplets. By adjusting the water dissolution rate of an aqueous CNC droplet immersed in a binary toluene-ethanol mixture we can control the final morphology of the consolidated microbead. At low ethanol concentration in the surrounding fluid dense microbeads of spherical morpholo...

متن کامل

Tuning the iridescence of chiral nematic cellulose nanocrystals and mesoporous silica films by substrate variation.

We have discovered that the self-assembly of cellulose nanocrystals (CNCs) into chiral nematic phases varies significantly with the substrate and evaporation rate. These variables allow the reflectance peak of iridescent chiral nematic films of CNCs and mesoporous silica templated from CNCs to be tuned over a wide range of wavelengths.

متن کامل

A simple route to hierarchically assembled micelles and inorganic nanoparticles.

Earning their stripes: A hierarchical assembly of micelles composed of an amphiphilic diblock copolymer, poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP), were made by combining controlled evaporative self-assembly of the confined PS-b-P4VP toluene solution in a cylinder-on-Si geometry with spontaneous self-assembly of micelles. This method gave microscopic stripes of nanometer-sized PS-b-...

متن کامل

Flexible and monolithic zinc oxide bionanocomposite foams by a bacterial cellulose mediated approach for antibacterial applications.

The use of self-assembled biomacromolecules in the development of functional bionanocomposite foams is one of the best lessons learned from nature. Here, we show that monolithic, flexible and porous zinc oxide bionanocomposite foams with a hierarchical architecture can be assembled through the mediation of bacterial cellulose. The assembly is achieved by controlled hydrolysis and solvothermal c...

متن کامل

Synthesis and characterization of supramolecule self-assembly polyamidoamine (PAMAM) G1-G1 NH2, CO2H end group Megamer

Supramolecule self assembly polyamidoamine (PAMAM) dendrimer refers to the chemical systems made up of a discrete number of assembled molecular subunits or components. These strategies involve the covalent assembly of hierarchical components reactive monomers, branch cells or dendrons around atomic or molecular cores according to divergent/convergent dendritic branching principles, systematic f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016